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We employ the self-consistent field theory to study phase structures of brush-rod systems composed
of two chemically distinct linear homopolymers. The polymer chains are uniformly grafted on the
surface of a nanorod particle of finite length and comparable radius to the polymer radius of gy-
ration. A “masking” technique treating the cylindrical boundary is introduced to solve the modi-
fied diffusion equations with an efficient and high-order accurate pseudospectral method involving
fast Fourier transform on an orthorhombic cell. A rich variety of structures for the phase separated
brushes is predicted. Phase diagrams involving a series of system parameters, such as the aspect ra-
tio of the nanorod, the grafting density, and the chain length are constructed. The results indicate
that the phase structure of the mixed brush-rod system can be tailored by varying the grafted chain
length and/or the aspect ratio of the rod to benefit the fabrication of polymeric nanocomposites.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4832742]

I. INTRODUCTION

Due to their tunable chemical properties and sensitive re-
sponse to environmental stimulus, surface-confined macro-
molecules known as polymer brushes have broad potential
applications in a variety of areas, such as colloidal stabiliza-
tion, tuning of the adhesion and wetting properties of surface,
coatings preventing or preferring biological systems, etc.1–3

A variation of polymer brushes, mixed polymer brushes,
has attracted tremendous interest in recent years.4, 5 When
chemically distinct linear chains are grafted on the sub-
strate, the physical (such as brush height and roughness) and
chemical properties (such as hydrophobicity and hydrophilic-
ity), as well as the morphology can be delicately designed
by adjusting a large space of system parameters including
solvent selectivity,6–10 degree of polymerization,6, 8–13 graft-
ing position and density,6, 8, 12, 14 geometry of the substrate
surface,1, 3, 15–17 etc.

Depending on the balance between the stretching of
chain configuration and the binary interactions between dif-
ferent components, mixed polymer brushes can only un-
dergo microphase separation leading to well-defined nanos-
tructures. The early theoretical work on mixed polymer
brushes by Marko and Witten18, 19 studied the equilibrium
phase morphology of binary mixed brushes grafted on a pla-
nar substrate and predicted a transition from miscible state
to ripple phases. In the recent two decades, the invention
of “graft to” and “graft from” methods enables the fabri-
cation of polymer brushes with well controlled thickness
and a high degree of grafting density to approximately one

a)Authors to whom correspondence should be addressed. Electronic ad-
dresses: pingtang@fudan.edu.cn and fengqiu@fudan.edu.cn

chain per square nanometer,4, 7–9, 20–22 and thus abundant the-
oretically predicted phase morphologies for binary mixed
brushes anchoring on a flat plane, such as ripple, dimple,
layer, and micelles,7, 14, 18, 19, 25 are possible to be achieved
experimentally.

Polymer brushes grafted on particles with a finite sur-
face area have great potential for applications.5 On one hand,
the brushes can be engineered to combine desired prop-
erties of both core particles and polymer brushes to ful-
fill the requirements from nanotechnology.1, 5 On the other
hand, when the substrate is finite, the morphology of bi-
nary mixed brushes must cope with the substrate geometry.
This promises abundant potential nanostructures. However,
despite the knowledge on the most frequently studied planar
brushes,4, 6–9, 14, 18–26 the study of polymer brushes (especially
mixed polymer brushes) on the surface of spherical colloids
or nanoparticles is limited.5, 10–13, 15–17, 27–30

Mixed polymer brushes grafted on particles, especially
on a spherical core, are prospected as a new class of environ-
mentally responsive nano-materials, which can be designed as
Janus particles or multi-valent colloidal particles with distinct
functions of different domains.5 Roan11, 12 predicted that the
binary mixed brushes exhibit a sequence of ripple, island, and
layer phases by increasing the difference in the chain numbers
(or grafting densities) and the chain lengths of the two species.
In our previous work,13 we explored the morphology of spher-
ical mixed brushes with a large space of system parameters,
and established phase diagrams with a rich variety of phases.
We found a series of island structures with different island
numbers representing specific structure symmetry in contrast
to conventional hexagonal arrangement. The spherical parti-
cle radius plays a significant role in determining the type of
the island structures.

0021-9606/2013/139(21)/214902/10/$30.00 © 2013 AIP Publishing LLC139, 214902-1
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On a cylindrical substrate, the asymmetric surface cur-
vature may introduce interesting phase behaviors. For both
planar and spherical surfaces, the curvature at each position
on the surface is identical; therefore, preference of different
morphology orientations is lost. However, when the substrate
is elongated, such as a cylindrical rod, the chain extensions
in the radial, axial, and lateral directions are different due
to the asymmetric curvatures in different directions along the
substrate.30

Although the synthesis of covalently grafted brushes on
a cylindrical core is already technically possible,29 there is,
to our knowledge, no theoretical or experimental study on the
mixed homopolymer brushes with immobile ends grafted on a
cylindrical surface at present. Nevertheless, brushes with mo-
bile grafting sites,15–17 or physically absorbed polymers on a
rod have been reported.26 Interestingly, in such systems al-
lowing macrophase separation, a ripple phase composed of
ring-shaped alternating stripes perpendicular to the cylinder
axis is proved, experimentally as well as theoretically,15–17 to
be a meta-stable phase.

Among a variety of theoretical and simulation meth-
ods, such as scaling method,3, 6, 30–32 molecular dynamics,33

density functional theory,23 and dissipative particle dynam-
ics (DPD),15, 16 the self-consistent-field theory (SCFT) is one
of the most important and frequently used approaches to
make accurate prediction for the morphology of polymer
brushes.7, 11–14, 17, 25–27 In our previous work, we have devel-
oped a spherical alternating-direction implicit scheme to nu-
merically solve SCFT in real-space for investigating the self-
assembly of block copolymers on spherical surface.34 The
major problem of numerically solving diffusion equations on
closed surfaces is the “pole problem.” Recently, we have nu-
merically solved the diffusion equations with SCFT by em-
ploying a so-called “masking” technique for polymer grafted
on a substrate,13, 35 which enables us to calculate with arbi-
trary geometrical shape. In this paper, we extend this method
to the cylindrical brush system.

The remainder of the paper is organized as follows. We
start with a description of the mixed brush-rod system and
then briefly summarize the SCFT approach in Sec. II. Then
the results for the phase separated mixed brush-rod system
immersed in a neutral solvent are described in Sec. III. Fi-
nally, the conclusions are summarized in Sec. IV.

II. THEORETICAL MODEL

We construct our polymer brushes by homogeneously
and covalently grafting two kinds of linear homopoly-
mers A and B on a cylindrical nanoparticle, and immerse
the system in a solvent S. The Kuhn length of polymers
bA = bB = b equals unit, and the volume of a polymer
segment and of a solvent molecule is υA = υB = υS = ρ−1

0
= b3. The volume fraction of component i is defined as ci

= niNiυ i/
∑

i = A,B,S niNiυ i, where ni is the number of
molecules of component i, and Ni is the number of segments
of one molecule of component i. The ratios of the relative
chain length for A and B are defined as αA = NA/N and
αB = NB/N, respectively, where the reference N is chosen to
be NA. NS is set to be one. The Flory-Huggins interaction pa-

FIG. 1. A scheme of the cross section of xz-plane of the binary mixed brush-
rod model. The black and the red curves represent the homopolymers A and
B grafted on the surface of the nanorod core, respectively.

rameter between species i and j is denoted as χ ij (i, j = A, B,
S, or W, here W means rod surface). The local volume frac-
tions of species i is φi(r), which obeys the incompressibility
constrain,

φA(r) + φB(r) + φS(r) + φW(r) = 1. (1)

The nanorod, which is the core of the brush-rod system,
has a cylindrical region of length H and radius R, and a hemi-
spherical cap of radius R at both ends (Fig. 1). The cylinder
axis is chosen to be z-axis. The center of the nanorod is placed
at the coordinate origin O. Since the polymer is uniformly
grafted on the surface of the nanorod, the grafting density is
calculated to be σi = ni

2πRH+4πR2 (i = A or B).
We employ SCFT to calculate the phase morphology and

the free energy of the system.36–39 The free energy of the
whole system is given as

F

kBT
= ρ0

N

∫
dr

⎧⎨
⎩1

2

∑
i �=j

χijNφi(r)φj (r) −
∑

k

ωk(r)φk(r)

−ξ (r)

(
1 −

∑
i

φi(r)

)}
(2)

−
∑

k

nk ln Qk

i, j = A, B, S or W, k = A, B or S,

where ωA(r), ωB(r), and ωS(r) are the conjugated potentials,
and ξ (r) is the Lagrange multiplier which enforces the incom-
pressibility constraint. By minimizing Eq. (2) with respect to
φi(r) and ωi(r), the self-consistent equations of the brush-rod
system are obtained as13

ωA(r) = χABNφB(r) + χASNφS(r) + χAWNφW(r) + ξ (r),
(3)

ωB(r) = χABNφA(r) + χBSNφS(r) + χBWNφW(r) + ξ (r),
(4)

ωS(r) = χASNφA(r) + χBSNφB(r) + χSWNφW(r) + ξ (r),
(5)
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φA(r) = cA

QAαA

∫ αA

0
dsqA(r, s)q+

A (r, αA − s), (6)

φB(r) = cB

QBαB

∫ αB

0
dsqB(r, s)q+

B (r, αB − s), (7)

φS(r) = cS

QS
exp(−ωS(r)/N ), (8)

where the polymer chain is parameterized with a continuous
path variable s.

The so-called “masking” technique, which was origi-
nally proposed by Khanna et al.,40 is employed to deal with
the confined polymers grafted onto the curved surface. We
have developed a method to solve the morphology of block
copolymers confined into complicated topographic surfaces
with SCFT.13, 35 In this paper, this unique technique is ex-
tended to solve the SCFT for nanorod grafted by mixed poly-
mer brushes. The details of this technique can be found in
Refs. 13 and 35. In this way, the use of simple Cartesian grids
in a cubic computational cell with periodic boundary condi-
tions makes it possible to solve diffusion equations in SCFT
by utilizing an efficient and highly accurate pseudo-spectral
method involving fast Fourier transformation, which was first
developed by Tzeremes et al.41 The “cavity” field φW(r) to
smooth the boundary condition is defined as

φW(r) =
{

1.0 rc ≤ 0

1
2

{
1 − tanh

[
m
t

(
rc − T

2

)]}
rc > 0

, (9)

where

rc=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
r2
x + r2

y+ (rz + H/2)2 − R, rz < −H/2√
r2
x + r2

y − R, −H/2 ≤ rz ≤ H/2√
r2
x + r2

y+ (rz − H/2)2 − R, rz > H/2
(10)

is the distance between a position r = (rx, ry, rz) and its nearest
position on the surface of the rod. The positive or negative
value of rc implies r inside and outside the rod, respectively.
rc = 0 denotes the positions on the nanorod surface. In this
work, the constants in Eq. (9) are m = 4.60, t = 1.0, T = 2.5,
and Rg = 0.5N1/2b.

In Eqs. (6) and (7), the propagator qi(r, s)(i = A or B) cor-
responds to the probability of finding a partial polymer chain
i of length s that starts from s = 0 anywhere in the system and
ends at position r, where the chain contour length s ∈ [0, αi].
It satisfies the diffusion equation,

∂qi(r, s)

∂s
= Nb2

6
∇2qi(r, s) − ωi(r)qi(r, s), i = A or B,

(11)
with the boundary condition,

qi(r, 0) =
{

1, rc > 0
0, rc ≤ 0

, i = A or B. (12)

Similarly, another propagator q+
i (r, s) corresponds to the

probability for a partial polymer chain i of length s that starts
from the grafting end of the chain and ends at position r.
q+

i (r, s) satisfies the same diffusion equation as Eq. (11). A

different boundary condition has to be applied for uniform
grafting,

q+
i (r, 0) =

{
σi

qi (r,αi )
, rc ∈ (0, b)

0, rc /∈ (0, b)
, i = A or B. (13)

Therefore, the chains are grafted within a quite small distance
of Kuhn length b above the surface of the nanorod and the
effective grafting density is

σ ′
i = ni

4π (R + b)2 + 2π (R + b)H
, i = A or B. (14)

Previously, a similar treatment to improve the numerical sta-
bility has been introduced by Kim and Matsen.27

We use the pseudo-spectral method to solve the diffu-
sion equation in a cubic box subjected to periodic boundary
conditions.41, 42 The main advantage of this method is its abil-
ity to treat domain of arbitrary geometrical shape in contrast
to finite-difference and finite element methods. Therefore, the
discretized form of the diffusion equation is

qi(r, s + �s) = exp

[
−�s

2
ωi(r)

]
exp

[
Nb2

6
�s∇2

]

× exp

[
−�s

2
ωi(r)

]
qi(r, s). (15)

Compared with the real-space solution of the diffusion equa-
tion, the pseudo-spectral method involving fast Fourier trans-
formation is more efficient and accurate.41

The single chain partition functions QA and QB for ho-
mopolymers A and B, and the partition function QS for sol-
vent S, are calculated via equations

QA = 1

V

∫
drq+

A (r, αA), (16)

QB = 1

V

∫
drq+

B (r, αB), (17)

QS = 1

V

∫
dr exp[−ωS(r)/N], (18)

where V = ∫
dr(1 − φW(r)) represents the effective volume

occupied by polymer and solvent.

III. RESULTS AND DISCUSSION

The mixed brush-rod system can be fabricated by differ-
ent methods.4 The covalent attachment can be accomplished
by either “grafting to” (end-functionalized chains react with
an appropriate substrate) or “grafting from” (polymer chains
are grown from the initiator immobilized on the substrate)
approaches. The “grafting from” approach is more promis-
ing for the fabrication of polymer brushes with a high graft-
ing density;4, 8 the thickness, grafting density, and molecu-
lar weight of the grafted polymer chains can be regulated by
grafting time, monomer concentration, initiator density, etc.
Therefore, in the SCFT calculation, we assume all these sys-
tem parameters are respectively controllable.

To reduce the parameter space, we assume both the
nanorod and the solvent are neutral to A and B homopoly-
mers, i.e., the Flory-Huggins parameters χAS = χBS = χAW
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= χBW = χSW = 0. We choose the chain length NA + NB

= 48. The calculations are carried out in a three-dimensional
space of Lx × Ly × Lz lattice, with the spatial discretization
�x = �y = �z = 0.25b. The chain contour is discretized
with a step length �s = b/30. The radius of the cylindrical
region of the nanorod is fixed to be R = 3b, and the aspect
ratio of the nanorod is denoted as ε = (H + 2R)/2R, with
ε = 1 for spherical core and ε > 1 for elongated rod. The
total grafting density in all of our calculations is fixed to be
σ = σ A + σ B = 0.6b−2, which locates in the high grafting
density region where chains are contacting each other and are
strongly stretching out near the substrate. The polymer chains
are densely tethered by one end via a covalent bond onto the
core surface. So that the grafting segments are immobile, thus
only microscopic phase separation can occur.

We define the relative volume fraction of component A
as fA = cA/(cA + cB) = σ ANA/(σ ANA + σ BNB), which is a
function of the chain length NA and NB, and also is a function
of grafting density σ A and σ B.

Our coarse-grained parameters can be translated into
physical dimensions as follows. Taking the experimentally
well-established mixed poly(tert-butyl acrylate) (PtBA)/PS
brushes grafted on silica particles as an example,5 the Kuhn
length for PS is around b = 1.8 nm, thus for a typical chain
length chosen in this paper, N = 24, the chain contour length
is 43.2 nm and the end-to-end distance is 8.8 nm. The radius
of the cylinder we chose is R = 3b = 5.4 nm and its length H
varies from 0 to 32.4 nm. The total grafting density is around
0.2 chain/nm2. These are all synthetically reasonable values.5

A. Symmetric brushes

We define σ A = σ B and NA = NB as the symmetric
mixed brushes. Therefore, the relative volume fractions are
fA = fB = 0.5. Such symmetric brushes could be fabricated
by connecting different copolymer chains on each branch of
a delicately designed Y-shaped initiator covalently grafted on
the substrate.9, 22

1. Morphology

When the polymer brushes are grafted on a spherical core
(corresponding to ε = 1), a typical ripple structure with two
spiral domains is obtained (as shown in Fig. 2(a)). The mor-
phology has D1 symmetry for each domain, and has D2 sym-
metry for geometry with different colors. Therefore, domain
A can overlap with domain B if the brushes rotate with respect
to the spiral axis by an angle π . Such ripple structure was also
observed in Roan’s work,12 and in our previous study.13 How-
ever, the spiral structure is not stable when the core is slightly
elongated (ε = 1.5, Fig. 2(b1)).

When ε > 1, we find that ripple structures perpendicu-
lar (ring-shaped) and parallel to the rod axis are both possi-
ble (they are both the solution of the self-consistent equations
with slight different free energies). It turns out that the free
energy of the system is mainly determined by the entropy of
the solvent, which means a slight change of the solvent selec-
tivity could reverse the relative stability of the perpendicular

FIG. 2. Typical morphologies of the symmetric brush-rod systems (χABN
= 40) with ε = 1, 1.5, 2.5, 4 from (a) to (d1)/(d2). The numbers 1 and 2
represent R4 and 4-Rin morphologies at the same ε, respectively. The second
and third rows are domains A and B drawn with φA ≥ cA and φB ≥ cB,
respectively. The morphologies in the first row are the combination of that in
the second and third rows.

and parallel ripple structures. In present calculation, we have
assumed a perfect neutral solvent (χAS = χBS = 0) for sim-
plicity, while in reality for two specific polymers any solvent
always prefers one of the polymer – no matter how weak is
the selectivity. Therefore to better compare the experiment,
we present and discuss the structures of both perpendicular
and parallel ripple phases (Fig. 2). The parallel ripple phase is
denoted as Rn, where n is the number of periods of the density
profile of one component in the equator plane z = 0. The per-
pendicular ripple phase or the ring-shaped phase is denoted as
n-Rin, where n is the number of periods of the density profile
of one component in the plane that includes the rod axis.

Taking R4 as an example, the domains for components A
and B have different configuration although the parameter set-
tings are symmetric (Fig. 2(b1)). One component forms a con-
tinuous matrix (domain B in Fig. 2(b1)), while the other one
(domain A in Fig. 2(b1)) forms two separated, U-shaped do-
mains perpendicular to each other, and the vale bottoms of the
U-domains occupy two poles of the nanorod. Therefore, the
geometry of R4 phase belongs to the same symmetry-group
of a tennis ball or a horse saddle, D2d, which means that if
we reflect the morphology with respect to xy-plane, and ro-
tate with respect to z-axis by π /2, then we get morphology
that overlaps its original shape.

In the perpendicular (or ring-shaped) ripple phase, if one
pole is covered by domain A, the other pole must be cov-
ered by domain B, and vice versa. The domain A or B itself
only has rotational symmetry with respect to the cylinder axis,
while the A and B combined morphology has D∞ symmetry
with inverted color.

The number of the ripple stripes in the cylinder region is
determined by the competition between the stretching energy
of polymer chains and the interfacial energy between differ-
ent components. On one hand, since one end of each polymer
is immobilized on the surface of the nanorod, the chains are
extensively stretched out from their grafting point to reach
their favorable domain area, leading to a stretching energy
penalty. Therefore, a larger domain size causes higher stretch-
ing energy. On the other hand, increasing the stripe number
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(which in turn decreasing the domain size) introduces more
interfaces, and consequently increases the interfacial energy.

Note that a ripple structure perpendicular to the rod
axis was also suggested for small molecule ligands by Singh
et al.15, 16 experimentally and theoretically. However, the rea-
son of emergence of the perpendicular ripple phase in their
work is different from our system: First, the radius of the
curved substrate in their systems is much larger than their
chain length, while in our case R is comparable to the ra-
dius of gyration of the polymer. The effect of the curvature
of the substrate is much stronger in our systems; Second, the
grafting point of the polymer in Ref. 15 is mobile on the sub-
strate in the experiment as well as in DPD simulations, allow-
ing macrophase separation. The emergence of perpendicular
ripple phase in SCFT calculation of Egorov,17 supporting the
results of Singh et al.,15, 16 is also due to the mobility of graft-
ing sites. When the grafting sites are mobile, the interfacial
energy can be decreased by increasing the width of the ripple
stripes without any penalty of stretching energy. Therefore,
the polymer prefers straight stripe domains oriented along the
rod axis where the curvature is zero, rather than along the lati-
tude direction where the curvature is the highest. Moreover, a
rotational symmetry is enforced in Ref. 17, which makes the
parallel ripple phase impossible.

2. The order parameter for polymer segregation

For the brushes immersed in a neutral solvent, the solvent
penetrates into the brush region and dilute the polymers. At
the A/B interface, due to the penetration of solvent, the prob-
ability of the contact between A and B segments is decreased,
and consequently the width of the interface is increased as if
the existence of solvent leads to a lower effective χABN. The
strength of such phenomenon depends on the local curvature
and the rod length. Therefore, in order to analyze the degree
of segregation of polymer A and B, we define an order param-
eter S(r) as

S(r) =
∑

k

(
φk(r) − φk(r)

)2
, k = A, B, (19)

where

φk(r) = Nk

NA + NB
(φA(r) + φB(r)) , k = A, B (20)

is the anticipated average density of component k. The order
parameter S takes into account the sum of deviation of each
component density, as well as the total polymer concentration
φA(r) + φB(r) at position r. The value of S vanishes either
in the area where the polymer does not segregate, or where
there is no polymer. The larger value of S indicates a stronger
polymer segregation locally.

We take the symmetric brush-rod with R4 structure as a
typical example to analyze the behavior of the order parame-
ter S, other ripple structures (either parallel or perpendicular)
are similar. In R4 structure, S in the equator plane z = 0 has
an eightfold rotational symmetry with respect to the origin O
(Fig. 3(a)). At the interface of A and B domains where the
local volume fractions of A and B are equal, S = 0. At the
positions far from the nanorod, where there are no polymers

FIG. 3. (a) The value of the segregation order parameter S(r) in the equator
plane (z = 0) for the R4 phase (χABN = 40) with ε = 1.5. (b) The total
polymer density profile in the equator plane for with ε = 3. The hmin and
hmax directions (white arrows) are the directions with the lowest and highest
values of the brush height, respectively.

either, S also equals zero. The highest value of S occurs at the
center line of each domain with a small distance to the graft-
ing surface, since there is always a mixed layer of A and B
above the core surface.

In order to compare the degree of segregation of mixed
brushes with different elongation ε, we calculate the average
S(δ) in the equator plane z = 0 with radius δ,

S(δ) =
∫
δ
Sdl

2πδ
, (21)

where
∫
δdl denotes the integration along the circle of radius

δ =
√

x2 + y2 in z = 0 plane. As shown in Fig. 4, S = 0 for
δ < 3b and δ > 18b, because the polymer density vanishes
inside the nanorod core and far from the rod surface. The
value of S is low in the grafting layer (3b < δ < 4b). The
uniform grafting density enforces the incompatible polymers
to mix. Once the polymers leave the grafting area, they are
stretched strongly to segregate into different domains, and S
increases sharply and reaches its highest value within a dis-
tance of roughly 2b ∼ 3b (in Fig. 4, the maximum of S is
reached within a distance of δ = 6b ∼ 7b, this is because the
rod here has a radius R = 3b and δ is count from the center of
the rod). Therefore, we conclude that the polymer chains need
a thickness of 2b ∼ 3b to overcome the influence of the uni-
form grafting. This thickness slightly increases when χABN
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FIG. 4. The segregation order parameter S averaged along the circular lines
of radius δ in the equator plane (z = 0) for the symmetric brush-rod systems
(χABN = 40) with different ε (solid symbols with solid lines). The open
circle with dotted line denotes S averaged over the sphere of radius δ of the
spherical brush.

decreases to 20. Increasing δ further, S decreases smoothly,
due to the decrease of total polymer concentration.

Comparing S(δ) of R4 structure with different ε, we find
that polymer segregation is systematically strengthened with
increasing ε.

Note the large increase of S when we slightly elon-
gate the spherical brush (ε = 1) to a short cylindrical brush
(ε = 1.5). We interpret this phenomenon to the geome-
try difference of the substrate. According to simple scal-
ing calculations,3 the polymer density profile of a mono-
component brush immersed in a neutral solvent decreases as
rυ where υ = −4/3 for the star-like brush and υ = −2/3 for
the bottle-brush. Here, r is the radial distance to the center
of the brush. Considering the same grafting density near the
substrate, the faster decreasing rate of polymer density for the
star-like brush than that for the cylindrical brush indicates that
more solvents penetrate into the brush region for the star-like
brush. Although the spherical brush and the cylindrical brush
are far from the “infinitely thin substrate” limit, giving the
same grafting density and radius R, we can confidently es-
timate the values of υ for a spherical brush and a cylindri-
cal brush located in the crossover region that −4/3 < υsphere

< υrod < −2/3. More solvents penetrate into the brush and di-
lute the polymer concentration, thus decrease the contribution
of χAB. Hence, the segregation order parameter S, which de-
creases with decreasing total polymer density as well as with
decreasing difference between φA and φB, exhibits large dif-
ference when the brush is slightly elongated (increasing ε by
0.5). Due to the same reason, S at the poles of a cylindrical
brush is always much lower than that in the equator plane.
Moreover, the density of the solvent is higher near A/B inter-
face, as implied by lower φA + φB at interface in Fig. 3(b),
which further decreases the interfacial energy.

For ε > 1, since the radius R is kept constant, increasing
ε refers to increasing the length of the cylindrical region, and
consequently increasing the distance from the equator plane
to the spherical caps of the nanorod. We attribute this mono-

tonically increasing S with ε to the decreasing influence of the
poles. By increasing ε, S profile approaches to its value for
the infinitely long cylindrical brush system, where the degree
of polymer segregation is stronger than the finite cylindrical
brushes. Although we are not able to carry out calculation for
higher aspect ratio, we can conclude from Fig. 4 that beyond
an ε value of 10, the S profiles represent those of an infinite
long brush-rod system.

3. The height of symmetric brushes

Brush height, namely, the brush thickness, is a key char-
acter of polymer brushes, which is closely related to a series
of physical properties such as the roughness of brush,21 the in-
teracting distance,23, 27 and so forth.3 Inspired by semi-dilute
polymer brush studies,13, 43 we define the height of the mixed
polymer brushes as (here, we also take the symmetric brush-
rod with R4 structure as a typical example)

h = 2
∫ L

0 (φA(r) + φB(r))ldl∫ L

0 (φA(r) + φB(r))dl
, (22)

where
∫ L

0 dl means the integration along a line l perpendic-
ular to the nanorod surface, from l = 0 on the substrate to
l = L at the boundary of the simulation box where the poly-
mer density is zero. The factor 2 in the numerator of the above
equation is to ensure h corresponding to the correct brush
height when the profile φA(r) + φB(r) takes a step-function-
like shape with an exact thickness L.

The brush height depends on the polymer density pro-
file on the integration contour. The distribution of total poly-
mer density φA + φB is not uniform in the space. Accord-
ing to the polymer density profile in the equator plane z = 0
(Fig. 3(b)), the maximum value of h occurs when the integra-
tion is along the center line of a domain (hmax in Fig. 3(b)),
while the minimum value of h occurs when the integration is
passing the interface of A and B domains (hmin in Fig. 3(b)).
In our brush-rod system, the difference of hmax and hmin in the
equator plane is about 5% of hmax.

The average brush height in the equator plane, denoted
as hequator, is always larger than the brush height at the poles,
denoted as hpole obtained by the integration of Eq. (22) along
z-axis (Fig. 5). Both hequator and hpole are greater than the av-
erage brush height for a spherical brush hsphere with ε = 1
(Fig. 5). The difference between hequator and hpole increases
with ε, and hequator must go to a finite limit value for infinite
long rod, although in our SCFT simulations the rod length H
is not long enough to show the limit value.

An interesting phenomenon is that the ratio h(Z)/hequator

shows very limited influence of χABN despite the increasing
height with χABN (Fig. 6), where h(Z) is the average brush
height in the plane perpendicular to z-axis with distance Z to
the origin O. For the rod with finite length, h(Z) decreases
from the equator to Z = H/2 where the cylinder region and the
hemispherical cap is connected. The ratio h(Z = H/2)/hequator

decreases from 0.99 to 0.92 when ε increases from 1.5 to 4.5.
This phenomenon is consistent with the increasing difference
between hequator and hpole with increasing ε (Fig. 5). By fur-
ther comparison with the brush height ratio for ε = 4.5 and
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FIG. 5. The brush height at the poles hpole and the average brush height in
the equator plane hequator for the R4 phase as a function of the aspect ratio
ε of the nanorod. The pink triangle denotes the average brush height of the
spherical brush of ε = 1 and χABN = 40.

χABN = 0, we conclude that in our brush system immersed in
a neutral solvent, χABN mainly influences the absolute value
of the brush height, and has very slight influence on the rela-
tive height of h(Z)/hequator. We surmise that a poor solvent or a
selective solvent will lead to different brush height behavior.
However, this is beyond the scope of the current paper.

Since our main focus in this paper is the effect of elonga-
tion of nanoparticles on brush morphology, we will not delve
into the influence of the ratio of brush height to particle ra-
dius on the phase separation thermodynamics. Anyway, this
is not a specific issue only for the present nanorod-brush sys-
tem, it is also related to nanoparticle-brush systems with both
isotropic (such as spherical brushes) and anisotropic (cylin-
drical brushes) shapes. We only point out that by changing
the radius of the core of spherical mixed brushes, a variety of
structures with different symmetries can be observed.13

FIG. 6. The ratio of brush height h(Z)/hequator for the Rn phase with differ-
ent χABN, where h(Z) is the average brush height in the plane z = Z and
hequator = h(0).

B. Asymmetric brushes

The asymmetric brush-rod systems here are defined as
the mixed polymer brushes with either NA �= NB and/or
σ A �= σ B. The asymmetric parameters would introduce more
complicated phase structures. To simplify the calculation, we
keep NA + NB and σ A + σ B constant, and systematically
change NA/(NA + NB), σ A/(σ A + σ B), and ε to observe the
evolution of phase separated morphology.

Similar as for symmetric brushes, asymmetric brushes
can be fabricated experimentally by controlling the polymer-
ization of different species,44–46 changing the ratio of two ini-
tiators on the substrate, etc.

1. σA �= σB and NA = NB

For spherical cases (ε = 1), using SCFT, Roan12 pre-
dicted that by increasing the chain number difference of two
components (corresponding to the grafting density differ-
ence), a spherical brush exhibits a sequence of ripple phase,
sphere/island phase, and layer phase. Such a sequence was
also validated in our previous work.13

We denote the ripple phase as Ripple, the ring-shaped
phase as n-Rin, the sphere phase as S without regarding the
number of spherical domains, and the layer phase as LBA

where the minor component B forms the outer layer and the
major component A forms the core (Fig. 7(a)). In this work,
although the grafting density and the chain length are not the
same, the region of Ripple, S, and LBA phase is consistent
with the result reported by Roan in Ref. 12. For the spherical
brush, Ripple, S, and LBA phase locate at 0.5 < fA < 0.62,
0.62 < fA < 0.83, and fA > 0.83, respectively, while they lo-
cate at fA = 0.5, fA = 0.75, and fA > 0.833 for NA = NB = 20
in Ref. 12, respectively. For the cases of cylindrical brushes
(ε > 1), besides Ripple, S, and LBA, the ring-shaped phase
(denoted as n-Rin) emerges between the region of Ripple
and S.

FIG. 7. (a) Morphologies of typical structures of the asymmetric brush-rod
system (χABN = 40) with NA = NB = 24 and σA �= σB. (b) The phase
diagram of the asymmetric brush-rod in terms of ε and fA = σA/(σA + σB).
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Note that the domains of the minor component always
emerge on the surface of the brush, even though its relative
volume fraction fB = 1 − fA reaches a small value of 0.1. We
ascribe this to the different entropy contributions even with
the same chain length of A and B. Indeed, for ε = 1.5 in
Fig. 7(a), the enthalpic contribution (per unit volume) from
the A (majority) and B chains are 0.00107374, and the entropy
contributions from the A and B chains are −0.01156591 and
−0.00150288, respectively. It is clear that the entropy change
of the A chains is more important in determining the mor-
phology and the system prefers not to stretch the A chains
too much. However, if B domain was embedded in domain A,
e.g., forming a phase LAB composed of a domain A shell and a
domain B core, the A chains have to be stretched further away
from the substrate, leading to a significantly stronger entropy
penalty than that of A core and B shell, which is a LBA phase.
In fact, only if NB 
 NA, as shown in Sec. III B 2, the interfa-
cial energy overcomes the entropy penalty of the short chain
and LAB becomes stable.

In the phase diagram (Fig. 7(b)), ring-shaped phase
(3-Rin and 4-Rin) for brush-rods (ε > 1) replaces Ripple
phase for the spherical brush when fA < 0.7. Further increas-
ing fA, S phase becomes stable. The stable area of S phase in
the phase diagram increases with ε so fast that for ε = 3 the
highest fA value to obtain S reaches 0.9. This volume fraction
already corresponds to LBA phase for spherical brushes.

Due to the increasing stable region of S phase, the region
of LBA shrinks with increasing ε (Fig. 7(b)). For fA = 0.9, LBA

only emerges for ε < 2.5 and S phase substitutes for ε ≥ 2.5.
For fA = 0.9 and ε = 4.5, which is not drawn in Fig. 7(b),
ripple structure emerges in the cylinder region of the brush
while the islands at the poles disappear. Note that this ripple
structure has the same symmetric group D2h as S shown in
Fig. 7(a).

In conclusion, when the chain lengths for A and B poly-
mers are the same, the stable region of ring-shaped and S
structures increase rapidly with increasing ε. However, lim-
ited by the parameter space we searched at the moment, we
cannot conclude that the ripple structure is always stable for
the infinitely long cylindrical brushes with asymmetric graft-
ing density.

2. σA = σB and NA �= NB

We keep the grafting density σ A = σ B = 0.3b−2, and
change the chain length of A, B polymers. Therefore, the rel-
ative volume fraction of component A is fA = NA/(NA + NB).

We choose ε = 3 and change the chain length, and il-
lustrate the microdomain configuration for different fA as
shown in Fig. 8. Other choice of ε leads to qualitatively sim-
ilar microdomain configurations. Comparing with the phase
sequence for ε = 3 in the phase diagram for NA = NB

(Fig. 7(b)), S phase never exists for non-equal chain length,
while the period number of the ripple structures shows a
tendency to increase when chain length difference increases.
Note that the number n for Rn here is determined by the do-
mains of the minor component. Therefore, even when the do-
main of B polymer is embedded in domain A, we still classify

FIG. 8. The morphologies of the asymmetric brush-rod systems
(χABN = 40) with σA = σB = 0.3b−2 and NA �= NB. The relative
volume fraction fA = NA/(NA + NB), where NA + NB = 48 and ε = 3. The
lower row shows the cross section of the corresponding morphologies in the
upper row in the plane that includes the z-axis or in the equator plane z = 0.
The blue, green, and red regions correspond to domain A, domain B, and the
nanorod, respectively.

it as the ripple phase to emphasize that the undulation of A/B
interface is parallel to the rod axis. Nevertheless, the defini-
tion of the ripple structure is optional to a certain extent, e.g.,
R8 structure connecting R and LAB in Fig. 8 can also be con-
sidered as LAB structure with undulating interface.

The period number n for the ripple phase increases from
four to eight when the chain length difference increases
(Fig. 8). Since NA + NB is fixed, increasing chain length
difference leads to the increasing difference of the radius of
gyration of A and B polymers. The longer chains (polymer
A in Fig. 8) extend farther into the solvent, and always have
more free space than the shorter chains (polymer B in Fig. 8)
to balance the entropic penalty for the strong stretching near
the substrate. Therefore, the length of the shorter chains de-
termines the phase structure in short distance from the graft-
ing substrate. The domain size close to the radius of gyration
of the shorter chain is always preferable. The shorter is the
polymer B chain, the smaller is the size of B domains, and
correspondingly the larger ripple period numbers. However,
when the chain for the minor component is too short (NA ≤ 8,
i.e., fB ≤ 0.17), a layer phase LAB composed of a small core
of B domain and a thick shell of A domain emerges, which
minimizes the interfacial energy with a little expense of the
stretching energy of chain A.

By changing the Flory-Huggins parameter χAB, we find
that the transition from LAB to Rn depends on the chemical in-
compatibility of the two components. We choose the lengths
NA = 34 and NB = 14, the parameters corresponding to LAB

phase for spherical brush, and systematically change χABN
from 20 to 40 with different ε (Fig. 9). The ripple phase Rn

only exists for χABN ≥ 35 and ε ≥ 2. When χAB increases,
the mixed polymer layer, which is the domain near the sub-
strate, tends to shrink to decrease the energy caused by the
contacting of A and B segments. Therefore, LAB structure is
not stable for large χAB, because the incompatibility drives
A chain out of B domain, inducing the undulation of A/B
interface, and consequently leads to the ripple structure. By
closely looking into the details of the density profile near the
transition point between R6 and LAB in Fig. 9, we find LAB
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FIG. 9. Phase diagram of the asymmetric brush-rod systems with σA = σB

= 0.3b−2, NA = 34, and NB = 14. The symbol means that the free energy
difference of L and R6 phases is not distinguishable by our SCFT calculation.

structure near both poles of the brush, while in the rod re-
gion of the brush there exists R6 phase. This is because of the
stronger solvent penetration leading to a weaker segregation
near the poles of the brush.

Other than the Flory-Huggins parameter and chain length
difference, the particle anisotropy (in the nanorod case the
aspect ratio ε) also plays an important role in changing the
morphology of the asymmetric brushes (Fig. 9). For (nearly)
spherical nanoparticles, there is a relatively larger outer space
for A and B chains, which reduces their unfavorable contacts,
therefore a LAB can exist. As ε exceeds 2 for higher χABN val-
ues, a transition from LAB to Rn occurs due to less space for A
and B chains in the rod region than near the poles (with more
space), i.e., there would be too many unfavorable contacts
between A and B segments in the rod region if they mixed
together.

IV. CONCLUSIONS

By using SCFT combined with the masking technique,
we studied the phase structures of binary mixed brush-rod
systems. The brush composed of two chemically distinct
polymers A and B is uniformly grafted on the surface of a
nanorod, and the system is immersed in a nonselective neu-
tral solvent. We focus on the morphology of phase separation
in the brush, and study its response to a series of parameters,
such as the aspect ratio of the nanorod ε, the grafting densities
σ A and σ B, and the chain lengths NA and NB.

The symmetric brush-rod system, defined as NA = NB

and σ A = σ B, is found to prefer either perpendicular or par-
allel ripple phase. According to the order parameter for poly-
mer segregation, we conclude that larger substrate curvature
causes a stronger penetration of the solvent, and hence leads
to a weakened segregation due to the dilution of polymer den-
sity especially near the interface between A and B domains.
The height of the brush varies from its highest value in equa-
tor plane to the lowest value at poles. Although the brush
height itself increases with increasing Flory-Huggins param-
eter χABN, the height ratio h/hequator along the latitude line
depends only on ε, while χABN has very limited influence.

The asymmetric brush-rod systems are categorized into
two types. For brushes with equal chain length (NA = NB)
and non-equal grafting density (σ A �= σ B), in the phase di-
agram when the aspect ratio of the nanorod ε increases,
the stable region of the ripple and sphere phase increases
rapidly, and consequently the stable regions of the layer phase
shrinks. For asymmetric brushes with equal grafting density
(σ A = σ B) and non-equal chain length (NA �= NB), the paral-
lel ripple phase is more stable in the phase diagram at high ε

and χABN values, and the layer phase dominates when both
the chain length difference is sufficiently high and χABN is
low.

In this paper, we consider the binary mixed brush-rod
system with finite rod length, which bridges the properties
of spherical brushes and infinitely long cylindrical brushes.
To simplify the analysis, only neutral solvent is considered
at present. However, the influence of selective solvent, which
has already been widely noticed in experiments, remains an
interesting topic that requires more efforts to study. We note
that it is straightforward to extend the present model to this
complicated yet still realistic situation. The findings may have
various implications for creating novel polymeric nanocom-
posites.
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